
JOINT DIAGONALIZABILITY

MANUEL W. LUETHI

Abstract. We give a genuinely linear proof that a commuting family of diagonalizable
matrices is jointly diagonalizable.

In 2017, during my PhD studies at ETH, I was organizing a first year course in Linear
Algebra for mathematicians and physicists. There, I faced the following problem. The
lecturer (and I) wanted to discuss linear algebra over arbitrary fields where sensible, but
without delving too much into algebra. After all it should be a first year course. In
particular, there was the issue that we did not discuss algebraic closures and factorization
of polynomials except for R and C. Moreover, due to time constraints we ended up not
discussion the minimal polynomial of a matrix. Still I wanted to discuss the fact that any
commuting family of diagonalizable operators is jointly diagonalizable, and thus I came up
with the following “genuinely linear” proof, which was given to the students as a (guided)
exercise. As it was previously unknown to me and as I like the fact that it is purely linear,
I decided to write up a clean version of it.

In what follows, V is a finite dimensional vector space over a field K, and T ⊂ End(V )
is a commuting family of diagonalizable operators, i.e. ST = TS for all S, T ∈ T and for
every T ∈ T there is a basis of V consisting of eigenvectors of T . Given T ∈ End(V ),
we denote by σ(T ) the set of eigenvalues of T and for all λ ∈ K we denote by Eλ(T ) the
subspace

Eλ(T ) = {v ∈ V : Tv = λv}.
Note that Eλ(T ) 6= {0} if and only if λ ∈ σ(T ) and for diagonalizable T ∈ End(V ) we have

V =
⊕
λ∈K

Eλ(T ) =
⊕
λ∈σ(T )

Eλ(T ).

Theorem 1. T is jointly diagonalizable, i.e. there is a basis B of V consisting of eigen-
vectors of T in the sense that for all v ∈ B and for all T ∈ T there is some λT ∈ K such
that Tv = λTv.

For the sake of readability, we split the proof into several lemmata.

Lemma 2. Let T ∈ End(V ) and assume W ⊆ V is T -invariant, i.e. T (W ) ⊆ W . Then

T : V/W → V/W, T (v +W ) = T (v) +W

is well-defined, linear. If v ∈ V is an eigenvector of T with eigenvalue λ, then

T (v +W ) = λ(v +W ).

Moreover, if T is diagonalizable, then so is T .
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Proof of Lemma 2. Let v1, v2 ∈ V satisfy v1 − v2 ∈ W , then

T (v1) +W =
(
T (v2) + T (v1 − v2)︸ ︷︷ ︸

∈W

)
+W = T (v2) +W.

Hence T well-defined. Linearity is a routine check. Let v1, v2 ∈ V and µ ∈ K, then

T
(
(v1 +W ) + µ(v2 +W )

)
=T
(
(v1 + µv2) +W

)
=T (v1 + µv2) +W

=
(
T (v1) + µT (v2)

)
+W

=
(
T (v1) +W

)
+ µ
(
T (v2) +W

)
=T (v1 +W ) + µT (v2 +W ).

If v ∈ V is an eigenvector of T , then by definition

(1) T (v +W ) = T (v) +W = λv +W = λ(v +W ).

Assume now that T is diagonalizable. We show that T is diagonalizable. Note that when-
ever {v1, . . . , vn} is a basis of V , then the set {v1 +W, . . . , vn+W} of cosets is a generating
set of V/W and thus contains a basis of V/W . As V by assumption admits a basis consist-
ing of eigenvectors of T , (1) shows that there is a basis of V/W consisting of eigenvectors
of T .1 �

Lemma 3. Let T ∈ End(V ) and let λ1, . . . , λk ∈ K denote pairwise distinct eigenvalues
of T and let vi ∈ Eλi(T ) (1 ≤ i ≤ k). If v1 + · · ·+ vk = 0, then v1 = · · · = vk = 0.

Proof of Lemma 3. It suffices to show that any finite collection of eigenvectors for pairwise
distinct eigenvalues is linearly independent. Hence assume that the vi are eigenvectors
(i.e. none equal 0), and assume that µ1, . . . , µk ∈ K are scalars such that

µ1v1 + · · ·+ µkvk = 0.

We show that this relation is trivial by induction. This is clear in case k = 1. Note that the
base for induction did not use T . Hence assume now that k ≥ 2 and that given an arbitrary
linear map on a vector space the statement is true for sums of up to k − 1 eigenvectors
with pairwise distinct eigenvalues. We note that W = Eλr(T ) is a T -invariant subspace.
Consider the map T : V/W → V/W constructed in Lemma 2 and note that

0 = µ1T (v1) + · · ·+ µk−1T (vk−1).

Note that vi 6∈ W for all 1 ≤ i < k, hence T (v1), . . . , T (vk−1) form a collection of eigenvec-
tors of T for pairwise distinct eigenvalues by Lemma 2. The induction assumption implies
that µ1 = · · · = µk−1 = 0 and hence the claim. �

Lemma 4. Assume that T ∈ End(V ) is diagonalizable and W ⊂ V is a T -invariant
subspace, then the restriction T |W ∈ End(W ) is diagonalizable and the eigenspace decom-
position of W with respect to T |W is given by

W =
⊕
λ∈σ(T )

(
W ∩ Eλ(T )

)
.

1One should convince oneself that this makes sense in case V = W .
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Remark. The decomposition of W in Lemma 4 relies on the T -invariance of W . In general
it is not true that a subspace is the sum of the intersections of the subspace with all the
direct summands. The counterexample is W = R(e1 + e2) ⊆ R2, where the decomposition
of the ambient vector space is given by R2 = Re1 ⊕ Re2. Here e1, e2 denotes a basis of R2.

Proof of Lemma 4. Choose an enumeration σ(T ) = {λ1, . . . , λk} of the elements of σ(T ),
such that λi 6= λj whenever 1 ≤ i < j ≤ k. As T is assumed to be diagonalizable, we have

V =
k⊕
i=1

Eλi(T ).

In what follows, we write Ei for Eλi(T ). We want to show that

W =
k⊕
i=1

(W ∩ Ei).

Let 1 ≤ i ≤ k, then (W ∩ Ei) ⊂ Ei and
∑

j 6=i(W ∩ Ej) ⊂
∑

j 6=iEj and in particular

{0} = (W ∩ Ei)
⋂∑

j 6=i

(W ∩ Ej),

implying that indeed
k∑
i=1

(W ∩ Ei) =
k⊕
i=1

(W ∩ Ei).

We know furthermore that
⊕k

i=1(W ∩Ei) ⊂ W . It remains to prove the opposite inclusion.
Let w ∈ W and using diagonalizability of T assume that v1, . . . , vk ∈ V satisfy vi ∈ Ei
and w = v1 + · · · vk. Then

0 = w +W = (v1 + · · ·+ vk) +W = (v1 +W ) + · · ·+ (vk +W ).

Every element in {vi+W | 1 ≤ i ≤ k} distinct from 0 is an eigenvektor of T and for any pair
of such elements the eigenvalues are distinct. It follows that vi + W = 0 for all 1 ≤ i ≤ k,
and hence vi ∈ W for each 1 ≤ i ≤ k. This shows that indeed w ∈

∑k
i=1(W ∩ Ei).

We note that T |W∩Eλ = λIW∩Eλ and hence the restriction of T toW∩Eλ is diagonalizable.
It follows that W ∩Eλ admits a basis consisting of eigenvectors of T |W . As for each family
of bases Bλ of W ∩ Eλ the union B =

⋃
λ∈σ(T ) Bλ is a basis of W , we conclude that W

admits a basis consisting of eigenvektors of T |W and hence T |W is diagonalizable. �

Proof of Theorem 1. Assume first that T = {T1, . . . , Tr} ⊂ End(V ) is a finite family of
commuting, diagonalizable operators. We prove the theorem by induction on r = |T |.
If r = 1, then T is jointly diagonalizable by assumption, i.e. there is nothing to show. As-
sume that r ≥ 2 and assume that the theorem holds for families of operators of cardinality
up to r− 1. The operator Tr is by assumption diagonalizable, i.e. there is a basis v1, . . . , vn
of V consisting of eigenvectors of Tr. Given 1 ≤ i ≤ n let λi ∈ K denote the corre-
sponding eigenvalue, i.e. Tr(vi) = λvi. We choose an enumeration {λ1, . . . , λk} of σ(Tr).
We denote Ei = Eλi(Tr). Note that for every S ∈ End(V ) which commutes with Tr, the
subspaces Ei are S-invariant. Indeed, if v ∈ Ei, then

Tr(Sv) = (TrS)(v) = (STr)(v) = S(Trv) = S(λiv) = λiSv
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and thus Sv ∈ Ei. Now consider the family T ′ = {T1, . . . , Tr−1}. As TjTk = TkTj for
all 1 ≤ j < r, it follows that Tj|Ei ∈ End(Ei). Lemma 4 implies that Tj|Ei is diagonalizable
for every 1 ≤ j < r. As T1|Ei , . . . , Tr−1|Ei is a family of r − 1 commuting, diagonalizable
operators, it is jointly diagonalizable and thus there is a basis of Ei consisting of eigenvectors
of T1, . . . , Tr−1. As each element in Ei by definition is an eigenvector of Tr, we obtain a

basis of Ei consisting of eigenvectors of T1, . . . , Tr. As i was arbitrary and V =
⊕k

i=1Ei,
we have found a basis of V consisting of eigenvectors of T1, . . . , Tr.

In the general case (i.e. T not finite), let T ′ = 〈T 〉 ⊆ End(V ) be the subspace generated
by T . By finite dimension of V , it follows that T ′ admits a basis BT ′ ⊆ End(V ) of jointly
diagonalizable operators. It is a routine check left to the reader that any basis B ⊆ V of V
consisting of eigenvectors of BT ′ in fact consists of eigenvectors of all the elements in T ′,
and in particular of T ⊆ T ′. �
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