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ABSTRACT. We give a genuinely linear proof that a commuting family of diagonalizable
matrices is jointly diagonalizable.

In 2017, during my PhD studies at ETH, I was organizing a first year course in Linear
Algebra for mathematicians and physicists. There, I faced the following problem. The
lecturer (and I) wanted to discuss linear algebra over arbitrary fields where sensible, but
without delving too much into algebra. After all it should be a first year course. In
particular, there was the issue that we did not discuss algebraic closures and factorization
of polynomials except for R and C. Moreover, due to time constraints we ended up not
discussion the minimal polynomial of a matrix. Still I wanted to discuss the fact that any
commuting family of diagonalizable operators is jointly diagonalizable, and thus I came up
with the following “genuinely linear” proof, which was given to the students as a (guided)
exercise. As it was previously unknown to me and as I like the fact that it is purely linear,
I decided to write up a clean version of it.

In what follows, V' is a finite dimensional vector space over a field K, and 7 C End (V)
is a commuting family of diagonalizable operators, i.e. ST = TS for all S,T € T and for
every T' € T there is a basis of V' consisting of eigenvectors of T'. Given T" € End(V),
we denote by o(T") the set of eigenvalues of 7" and for all A € K we denote by E,(T) the
subspace

E\(T)={veV :Tv=\v}.
Note that E)\(T") # {0} if and only if A € o(T') and for diagonalizable T € End(V') we have

V=EET) = P ED).

AeK Ao (T)

Theorem 1. 7T is jointly diagonalizable, i.e. there is a basis B of V' consisting of eigen-
vectors of T in the sense that for all v € B and for oll T € T there is some \p € K such
that Tv = Apv.

For the sake of readability, we split the proof into several lemmata.
Lemma 2. Let T € End(V) and assume W C 'V is T-invariant, i.e. T(W) C W. Then
T:V/IW—=V/W,To+W)=Tw)+W
1s well-defined, linear. If v € V is an eigenvector of T with eigenvalue A, then
T(w+W)= v+ W).
Moreover, if T is diagonalizable, then so is T.
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Proof of Lemma 2. Let vy,vy € V satisfy v; — vy € W, then
T(v) +W = (T(v2) + T(v1 —v2) ) + W = T(vs) + W.
ew
Hence T well-defined. Linearity is a routine check. Let v1,v5 € V and u € K, then
T((v1 + W)+ p(vg + W) =T ((v1 + po2) + W)
=T(vy + pvy) + W
=(T(v1) + uT(v2)) + W
=(T(v1) + W) + pu(T(v) + W)
=T(v1 + W) + uT(vy + W).
If v € V is an eigenvector of T', then by definition

(1) Tw+W)=Tw)+W = v+W = Xv+W).

Assume now that 7 is diagonalizable. We show that T is diagonalizable. Note that when-
ever {vy,...,v,} is a basis of V, then the set {v; +W, ... v, + W} of cosets is a generating
set of V/WW and thus contains a basis of V/WW. As V by assumption admits a basis consist-
ing of eigenvectors of T, (1) shows that there is a basis of V/W consisting of eigenvectors
of T O

Lemma 3. Let T € End(V) and let Ay, ..., \x € K denote pairwise distinct eigenvalues
of T and let v; € E5,(T) 1 <i<k). Ifvy+---+v,=0, thenvy =--- =1, =0.

Proof of Lemma 3. 1t suffices to show that any finite collection of eigenvectors for pairwise
distinct eigenvalues is linearly independent. Hence assume that the v; are eigenvectors
(i.e. none equal 0), and assume that p,. .., u; € K are scalars such that

p1v1 + -+ ppog = 0.

We show that this relation is trivial by induction. This is clear in case £ = 1. Note that the
base for induction did not use T'. Hence assume now that £ > 2 and that given an arbitrary
linear map on a vector space the statement is true for sums of up to k£ — 1 eigenvectors
with pairwise distinct eigenvalues. We note that W = E) (T') is a T-invariant subspace.
Consider the map T : V/W — V/W constructed in Lemma 2 and note that

0= [LlT(Ul) + -+ Uk—lT('Uk—l)-

Note that v; ¢ W for all 1 <4 <k, hence T(v1),...,T(ve_1) form a collection of eigenvec-
tors of T' for pairwise distinct eigenvalues by Lemma 2. The induction assumption implies
that gy = -+ = k1 = 0 and hence the claim. O

Lemma 4. Assume that T € End(V) is diagonalizable and W C 'V is a T-invariant
subspace, then the restriction T'|w € End(W) is diagonalizable and the eigenspace decom-
position of W with respect to Ty is given by

W= € (WnE\T)).

Aeo(T)

1One should convince oneself that this makes sense in case V = W.
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Remark. The decomposition of W in Lemma 4 relies on the T-invariance of W. In general
it is not true that a subspace is the sum of the intersections of the subspace with all the
direct summands. The counterexample is W = R(e; + e5) C R?, where the decomposition
of the ambient vector space is given by R? = Re; @ Re,. Here ey, e; denotes a basis of R2.

Proof of Lemma 4. Choose an enumeration o(7") = {A,..., Ay} of the elements of o(T),
such that A; # A; whenever 1 <1i¢ < 7 <k. As T is assumed to be diagonalizable, we have

V=@EPE\ )

In what follows, we write E; for E) (7). We want to show that

W = é(Wﬂ E).

=1

Let 1 <i <k, then (WNE;) C E;and 3, ,(WNE;) C >, Ej and in particular

{0}=WnE)()_(WnE)),
J#i
implying that indeed

(WNE)=EWnE).

k k
=1 =1

1

We know furthermore that @le(Wﬁ E;) C W. It remains to prove the opposite inclusion.
Let w € W and using diagonalizability of T assume that vq,..., v, € V satisfy v; € E;
and w = vy 4+ ---vg. Then

O=w+W= v+ Fuv)+ W= (v + W)+ + (v + W).

Every element in {v;+W | 1 <14 < k} distinct from 0 is an eigenvektor of T and for any pair
of such elements the eigenvalues are distinct. It follows that v; + W =0 for all 1 <1 < k,
and hence v; € W for each 1 < i < k. This shows that indeed w € ZL(W NE;).

We note that T'|ywng, = Mwng, and hence the restriction of T'to WNE) is diagonalizable.
It follows that W N E admits a basis consisting of eigenvectors of T'|y,. As for each family
of bases By of W N E, the union B = U/\EU(T) B, is a basis of W, we conclude that W

admits a basis consisting of eigenvektors of 7’|y and hence T'|y is diagonalizable. 0

Proof of Theorem 1. Assume first that 7 = {T3,...,7,} C End(V) is a finite family of
commuting, diagonalizable operators. We prove the theorem by induction on r = |T].
If r =1, then T is jointly diagonalizable by assumption, i.e. there is nothing to show. As-
sume that r > 2 and assume that the theorem holds for families of operators of cardinality

up to r — 1. The operator T, is by assumption diagonalizable, i.e. there is a basis vy, ..., v,
of V' consisting of eigenvectors of T,.. Given 1 < i < n let \; € K denote the corre-
sponding eigenvalue, i.e. T, (v;) = Av;. We choose an enumeration {Ay,..., Ay} of o(T,).

We denote E; = E,,(T,). Note that for every S € End(V) which commutes with T, the
subspaces F; are S-invariant. Indeed, if v € E;, then

T.(Sv) = (T,.9)(v) = (ST;)(v) = S(T,v) = S(\v) = A\ Sv
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and thus Sv € E;. Now consider the family 7" = {T1,...,T,1}. As T;T}, = T,T; for
all 1 < j < r, it follows that Tj|s, € End(E;). Lemma 4 implies that Tj|g, is diagonalizable
for every 1 < j <r. As Ti|g,,...,Tr—1|g, is a family of r — 1 commuting, diagonalizable
operators, it is jointly diagonalizable and thus there is a basis of E; consisting of eigenvectors
of Ty,...,T,_1. As each element in E; by definition is an eigenvector of T,, we obtain a
basis of F; consisting of eigenvectors of T7,...,T,.. As i was arbitrary and V = @le E;,
we have found a basis of V' consisting of eigenvectors of 77, ..., 7.

In the general case (i.e. 7 not finite), let 7' = (7) C End(V') be the subspace generated
by T. By finite dimension of V', it follows that 7’ admits a basis B C End(V') of jointly
diagonalizable operators. It is a routine check left to the reader that any basis B C V of V
consisting of eigenvectors of By in fact consists of eigenvectors of all the elements in 77,
and in particular of 7 C 7. O
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