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Abstract. We motivate the proof of the singular value decompostion for a linear map
between two finite dimensional R vector spaces and argue that the proof follows with
elementary trickery from the right formulation of the question.

During his PhD studies at ETH, the first named author got into a discussion with an
undergraduate student, who admitted that the technicality of the proof of the singular value
decomposition blurred its meaning to him. Convinced, that this is by no means necessary,
the first named author insisted on providing him with a geometric argument. From this
the following proof was reconstructed, and afterwards incorporated in the course taught by
the second named author.

We first motivate the statement. Assume that T : Rn → Rm is linear of rank r = rankT ,
i.e. r denotes the dimension of the image of T . Let (w1, . . . , wr) be any ordered basis
of imT . By definition there are v1, . . . , vr ∈ Rn such that Tvi = wi and thus (v1, . . . , vr)
is a linearly independent set. One easily checks that kerT ∩ 〈v1, . . . , vr〉 = {0}, and hence
we can find an extension (v1, . . . , vn) to a basis of Rn such that the matrix representing T
with respect to this basis and any extension of the wi to a basis of Rm is of the form(

Ir 0
0 0

)
,

where Ir denotes the r × r identity matrix. If we normalize the vi with respect to the
Euclidean metric on Rn, then we would have to replace the identity matrix in the top left
corner by a diagonal matrix, whose diagonal entries are the original length of the vectors vi.

The singular value decomposition is a refined version of this statement. Its proof is a
bit more intricate, as we can certainly start with an orthonormal basis of imT and we
can of course extend it to an orthonormal basis of Rm, but there is no reason why the vi
should be orthogonal. However the singular value decomposition states that there exists
an orthonormal basis of Rm such that the corresponding vi can be chosen orthonormally.

There are two main ingredients:

• We want to somehow single out a designated basis of imT for which the vi could be
orthogonal, but ex ante it is not clear, where this would come from. Let T ∗ denote
the adjoint to T . Then TT ∗ is self-adjoint non-negative definite and hence Rm has
an orthonormal basis consisting of eigenvectors of TT ∗. As imTT ∗ = imT , there is
a very special basis of imT , namely the eigenvectors of TT ∗ for positive eigenvalues.
• The map T defines a bijection between (kerT )⊥ and imT , hence given w ∈ imT ,

there is a unique v ∈ (kerT )⊥ such that Tv = w. Note that imT ∗ ⊆ (kerT )⊥, and
as the restriction of TT ∗ is diagonalizable, so is its inverse. Hence one expects that
for the unique vi ∈ (kerT )⊥ satisfying Tvi = wi for some eigenvector wi ∈ imT
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of TT ∗, one also has that T ∗wi is a multiple of vi. It will however turn out that in
the proof it is much easier to define the vi using T ∗ directly.

We now set out to give a rigorous proof of the following

Theorem 1 (Singular Value Decomposition). Let T : Rn → Rm linear and r = rankT ≥ 1.
Then there exist σ1 ≥ · · · ≥ σr > 0 and orthonormal bases (vi)

n
i=1 and (wj)

m
j=1 of Rn and Rm

respectively, so that Tvi = σiwi whenever 1 ≤ i ≤ r and vi ∈ kerT otherwise. Moreover,
the singular values σ1, · · · , σr are uniquely determined by T .

Proof. As TT ∗ is non-negative definite self-adjoint, there exists an orthonormal basis (wj)
m
j=1

of Rm consisting of eigenvectors of TT ∗. For all 1 ≤ j ≤ m let λj ∈ R be the eigenvalue
of TT ∗ corresponding to the eigenvector wj. After permutation of the elements of the
basis, we can assume without loss of generality that λ1 ≥ · · · ≥ λρ > 0 = λρ+1 = · · · = λm,
where ρ = rankTT ∗. In particular, (wj)

ρ
j=1 is an orthonormal basis of imTT ∗.

We show now that imTT ∗ = imT . The inclusion imTT ∗ ⊆ imT is immediate, and using
the assumption of finite dimensionality, it suffices to show that rankTT ∗ = rankT . First
we show that kerTT ∗ = kerT ∗. Again, one inclusion is clear, as T ∗w = 0 =⇒ TT ∗w = 0.
For the opposite inclusion, assume that w ∈ kerTT ∗. Then

0 = 〈TT ∗w,w〉 = 〈T ∗w, T ∗w〉 =⇒ T ∗w = 0

and hence follows kerTT ∗ ⊆ kerT ∗. Hence the dimension formula implies that

rankTT ∗ = m− dim(kerTT ∗) = m− dim(kerT ∗)

= rankT ∗ = rankT

as desired. It follows, that ρ = r and that (wj)
r
j=1 is an orthonormal basis of imT .

For 1 ≤ i ≤ r set ṽi = T ∗wi, then for all 1 ≤ i, j ≤ r holds

λiδij = 〈TT ∗wi, wj〉 = 〈ṽi, ṽj〉
and thus (ṽj)

r
j=1 form an orthogonal family of non-zero vectors. In particular, they are

linearly independent. Let v ∈ kerT , then we get for 1 ≤ i ≤ r

0 = 〈Tv, wi〉 = 〈v, ṽi〉
and thus (kerT ) ⊥ 〈ṽ1, . . . , ṽr〉, so that using n = dim(kerT ) + r there exists an exten-
sion (ṽi)

n
i=1 to an orthogonal basis of Rn. Let vi = 1

‖ṽi‖ ṽi for all 1 ≤ i ≤ n, then it follows

that

T
( n∑
i=1

αivi

)
=

n∑
i=1

αiTvi =
r∑
i=1

αi
√
λiwi

and setting σi =
√
λi the existence follows.

For the uniqueness, we note that for any set of singular values and corresponding normal
basis (v1, . . . , vn), we have

〈T ∗Tvi, vj〉 = σ2
i δij

and thus vi is an eigenvector of T ∗T for eigenvalue σ2
i . Hence by positivity and ordering,

σi is uniquely determined by T . �
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